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Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the current noisy
intermediate-scale quantum (NISQ) era. This paper combines hybrid quantum-classical computation and quasi-probability
decomposition to propose two variational quantum algorithms, called variational entanglement detection (VED) and variational
logarithmic negativity estimation (VLNE), for detecting and quantifying entanglement on near-term quantum devices, respectively.
VED makes use of the positive map criterion and works as follows. Firstly, it decomposes a positive map into a combination of
guantum operations implementable on near-term quantum devices. It then variationally estimates the minimal eigenvalue of the
final state, obtained by executing these implementable operations on the target state and averaging the output states.
Deterministic and probabilistic methods are proposed to compute the average. At last, it asserts that the target state is entangled if
the optimized minimal eigenvalue is negative. VLNE builds upon a linear decomposition of the transpose map into Pauli terms and
the recently proposed trace distance estimation algorithm. It variationally estimates the well-known logarithmic negativity
entanglement measure and could be applied to quantify entanglement on near-term quantum devices. Experimental and
numerical results on the Bell state, isotropic states, and Breuer states show the validity of the proposed entanglement detection and

quantification methods.
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INTRODUCTION

It is widely believed that we are now in the noisy intermediate-scale
quantum (NISQ) era', where quantum computers with 50-100 qubits
are available while noise in quantum gates severely limits the
quantum circuits that can be executed reliably. It thus becomes
important to make the best use of today’s NISQ devices to design
practical applications. One promising scheme for near-term quantum
applications is the variational quantum algorithms (VQA)?, which
have been applied to solve many tasks including Hamiltonian
ground and excited states preparation®*, quantum state distance
estimation®®, and quantum data compression’~. These variational
quantum algorithms involve evaluating and optimizing loss functions
that depend on parameters in parameterized quantum circuits (PQC).
They are regarded as well-suited for execution on NISQ devices by
combining quantum computers with classical computers. We refer
the readers to'®'" for a detailed review on VQA.

Quantum entanglement'?, the most nonclassical manifestation
of quantum mechanics, has been identified as invaluable resource
enabling a tremendous number of tasks ranging from quantum
information processing'®'%, quantum cryptography'*>'¢, quantum
algorithms'”'8, quantum communication'®, to measurement-
based quantum computing?®2'. As so, the ability to manipulate
quantum entanglement'??? is the cornerstone to achieve real
applications of quantum technologies. A number of theoretical
and experimental methods have been proposed in the past 20
years for entanglement detection and quantification'*232%, For
example, entanglement can be detected via entanglement
witnesses?>>?5, Bell's inequalities?’, realignment criterion®2°,
range criterion®®, and majorization criterion®'. These methods
commonly assume that prior information about the target state is
known. A direct way to obtain such information is to perform
quantum state tomography and reconstruct the density
matrix3>33, However, tomography becomes unrealistic as the

number of required measurement settings scales exponentially
with the size of the system. Briefly speaking, though there are
many methods proposed for detecting and quantifying quantum
entanglement, they are not specially designed for near-term
quantum devices and thus are not directly applicable in most
cases, rendering reliable detection and quantification of quantum
entanglement on near-term quantum devices a vital challenge.
Recently there are a number of works aiming to overcome this
challenge®*=7. The core idea of all these approaches is to perform
measurements in randomly sampled bases, leading to ensembles
of measurement outcomes whose statistical correlations provide a
fingerprint of the system’s entanglement.

In this paper, we combine VQA and the quasi-probability
decomposition technique®¥~* to propose the variational entan-
glement detection (VED) and variational logarithmic negativity
estimation (VLNE) algorithms, contributing new approaches to
detect and quantify quantum entanglement on near-term
quantum devices, respectively. VED uses criteria based on positive
maps as a bridge and works as follows. Given an unknown target
bipartite quantum state, it firstly decomposes the chosen positive
map into a linear combination of NISQ implementable quantum
operations. Then, it variationally estimates the minimal eigenvalue
of the final state, which is obtained by executing these quantum
operations on the target state and averaging the output states.
Two methods are proposed to compute the average: the first one
averages the output states according to the quasi-probability
distribution, and the second one estimates the average via the
sampling technique and is probabilistic. At last, it asserts that the
target state is entangled if the optimized minimal eigenvalue is
negative. Following the idea of VED, VLNE variationally computes
the well-known log-negativity entanglement measure, building on
a linear decomposition of the transpose map into Pauli terms and
the recently proposed trace distance estimation algorithm.
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Experimental and numerical results reveal the validity of the
proposed entanglement detection and quantification methods.

RESULTS
Quantum entanglement detection

In this section, we integrate variational quantum algorithms with the
quasi-probability decomposition technique®*®** to propose a bipar-
tite entanglement detection framework specially designed for near-
term quantum devices, using positive map criterion as a bridge. For
simplicity, we assume A and B are two n-qubit quantum systems
throughout this section. However, we remark that the proposed
framework can be applied to bipartite systems with different
dimensions directly.

Let A be a discrete set of quantum operations that are
implementable in the near-term quantum devices. For example,
one may choose A to be the set of implementable operations
introduced in*>%3, Alternatively, one may set A to be the set of
Pauli channels induced by Pauli operators from the Pauli set [see
Supplementary Note 1]. For a positive (but not completely
positive) and trace-preserving map N'z_p, we assume that it can
be decomposed w.r.t. A as

N() = Zt’@(’)('), ro € R. (1)

Oeh

Note that such a decomposition always exists if A contains a
universal basis*?. The trace-preserving condition imposes
> ofo =1. We emphasize that there must exist negative
coefficients rp since otherwise, A/ is completely positive. Given
a bipartite quantum state p,z we have

Ons := Np_g(0a5) = Z roOp—.5(Pas)- (2)

Och

To see if pag can be detected by N, i.e., if pag is entangled from
N's perspective, we need to check if the output state gsg has a
negative eigenvalue or not. Denote by Amin(0as) the smallest
eigenvalue of . By the positive map criterion, if pag is separable,
then it must hold that Ayin(045) > 0. Equivalently, if Ayin(0as) <O,
we safely conclude that p4s is entangled and it can be detected by
the positive map A . This highlights the importance of
computing or estimating Amin(0ag) in entanglement detection.

Deterministic detection. As we have argued, o0,z cannot be
obtained directly via N(p) since A does not represent a
physically implementable quantum operation. Fortunately, the
decomposition in Eg. (2) empowers us an effective way to
simulate the role of A/ and reconstruct o4z as an average of a set
of output states, obtained using quantum circuits implementable
in near-term devices. This decomposition technique, combined
with the variational quantum algorithm, enables a general
framework that estimates Amin(0ag), Whose value can witness
the entanglement of the input state pss. We call this framework
the variational entanglement detection (VED). The core idea is to
use the linear decomposition in Eq. (2) of the target state gz and
the framework goes as follows. First of all, it holds that (see
Supplementary Note 1)

Amin(0a8) = m>in<w\oAslw> ?3)
=min ZTO<W|O(PAB)|‘P>7 (4)
Yhas Oeh

where the minimization ranges over all pure bipartite quantum
states |y),; in AB. We use a variational quantum circuit with
parameters a to prepare the test state |). More precisely, we
choose a parameterized quantum circuit ansatz that generates a
unitary U(a) and prepares the test state via |¢) = U(a)|0)“*". Each
inner product (¢|O(p)|y) in Eq. (4) can be estimated via the
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Fig.1 Circuit estimating the overlap (@|O(p,3)|@) in Equation (7).
This simplified quantum circuit estimates the overlap (¢|O(pz)|¥)
in Eq. (7) for a given implementable operation O, where |yp) :=
Uq|0)®" is the parameterized input state.

canonical Swap Test subroutine®®, as both U(a) and O can be
implemented in near-term devices. However, this subroutine costs
a total number of 4n+ 1 qubits and requires a 4n-qubit SWAP
gate, which is resource consuming when n becomes large. Here
we explore the special structure of the overlap (|O(p)|y) and
propose an qubit efficient estimating procedure which uses 2n
qubits and avoids the use of expensive SWAP gate. First of all,
notice that

(W(a@)|O(pag) (@) (5)
= (0*"|UO(pap)Ua|0™") 6)
= Tr[ULO(pa5)Ual07)(0™"]], @

where the second equality follows from the cyclic property of
trace function. Since each O is implementable on near-term
quantum devices, we may use pap as input to the quantum circuit
implementing O, and estimate the overlap (¢|O(pqz)|@) using the
quantum circuit illustrated in Fig. 1. The overlap is obtained by
counting the relative frequency of the measurement outcome 02",
Then, we repeat the estimation procedure |A| times, where [4] is
the size of A, to obtain the overlaps for different O in Eq. (4). With
these data in hand, we compute the following loss function:

L(a) ==Y ro(w(@)|O(pp)|¢(a)). ®)
Och

We remark that this loss function is a global cost since it requires
measuring the expectation value of all zero results, which may lead
to barren plateaus*. We provide detailed discussions and potential
solutions in the section “Resource cost and barren plateaus”. In
particular, it would be interesting to adapt the technique invented
in*® to define a local version for pursuing better scalability and
trainability. At last, we perform gradient-based optimization methods
including SGD* and Adam®® to minimize the loss function L(a) by
varying the parameters a, whose value will determine the
separability of the input state pas. More precisely, if L(a) is negative,
we conclude that psz is entangled, since by the positive map
criterion, separable states cannot yield a negative spectrum.

Taking into account the noise in NISQ quantum devices, we may
introduce a tolerance threshold 6 >0 so that L(a) < —6 implies the
input state is entangled. This threshold & can be set with prior
knowledge about the noise characterization on the NISQ devices.
What's more, for the purpose of entanglement detection, it is
unnecessary to minimize L(a) since the condition L(a) < 0 is sufficient
to assert that the input state is entangled. Based on this observation,
we can terminate the optimization procedure that minimizes the loss
function L(a) in advance to save the optimization cost. It was
heuristically observed that the loss function achieves lower values
with noise-free training than with noisy training*~>', where the
intuition behind is that the cost landscape is flattened and hence
gradient magnitudes are reduced due to the hardware noise®. Based
on this observation and the fact that separable states have positive
eigenvalues in the positive map criteria, we conclude that the
optimized loss function for separable states will always be positive,
and thus our algorithm will not lead to false-positive results.
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Fig. 2 The VED framework for detecting entanglement on near-term quantum devices. The difference between the deterministic VED in
Algorithm 1 and the probabilistic VED in Algorithm 2 lies in how the decomposed quantum operations are sampled.

The detailed VED framework is summarized in Algorithm 1 and
illustrated in Fig. 2. We name it the deterministic VED to distinguish it
from the probabilistic framework described in the next section.

Algorithm 1. Deterministic VED
1: Input: 2n-qubit quantum state pg decomposition in Eq. (1)
of the positive map N/, parameterized quantum circuit U(a)
with initial parameters a, and tolerance §;
: Initialize L(a) = 0;
: for all O € A such that rpo #0 do )
: Apply Uq to [0)°?" and obtain test state |p) = Uq|0)“";
: Input pap and compute the overlap co = (Y|O(pps)|¥)
using the quantum circuit in Fig. 1;
: Update the loss function L(a) = L(a) + roco, where rep is
given by the decomposition in Eq. (1);
7: end for
8: Perform optimization methods to minimize L(a); terminate
the optimization if the error tolerance is satisfied: L(a) < —&;
9: Output “Entangled” if the optimized L(a) < —4.

u b wWN

o)}

Probabilistic detection. In Algorithm 1, we have used a brute-
force approach, where we iterate over the set of implementable
operations A, to estimate the loss function L(a). Actually, L(a) can
be estimated in a probabilistic way using the sampling technique,
by virtue of the quasi-probability decomposition in Eq. (1). This
method would be beneficial when the number of decomposed
operations in Eq. (1) with non-zero coefficients is large while the
sampling cost is relatively low. Now we describe the sampling
method accurately. First of all, notice that the decomposition in
Eq. (1) induces a quasi-probability distribution {ro},., over A.
From this quasi-probability distribution, we can construct a
probability distribution {py}nca Using the canonical technique,
ie,

po = M =3 rol- ©)
Oeh
Substituting Eq. (9) into Eq. (8) yields
a) =y _san(ro)po(w(@)|O(pss) (@) 10)
Oel
= Eolysgn(ro)(¥(a)|O(pas) [(a))], an

where [E(X) denotes the expectation of the random variable X,
and the expectation in Eq. (11) is evaluated w.r.t. the probability
distribution {pp}c,- Based on Eq. (11), we propose Algorithm 2,
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which can be viewed as a probabilistic version of Algorithm 1. In
particular, Algorithm 2 replaces the brute-force approach (Steps
3-7) in Algorithm 1 with the sampling approach, yielding a
probabilistic algorithm as summarized in Algorithm 2.

Let's analyze Algorithm 2 in depth. First, we remark that the
obtained L'(a) in step 10 of Algorithm 2 is an unbiased estimator
of true value L(a) due to Eq. (11). Second, since |L™| <y, we can
apply the Hoeffdlng s inequality>® to ensure that M=
2y?log(2/€) /8% number of samples would estimate the true value
L(a) within error 6 with success probability no less than 1—¢, i.e.,

p(IL'(a) — L(a)] < 8) > 1 —&. (12)

This confirms the validity of the sampling procedure (steps 4-9) of
Algorithm 2. We call y the sampling cost since it determines M, the
number of samples required to achieve the desired precision. At
last, we examine the success probability of the algorithm, given
the success probability condition in Eq. (12) of the sampling
procedure. Assume the optimization procedure repeats K times.
The overall success probability of Algorithm 2 is no less than 1—KG,
as a direct corollary of Eq. (12) and the union bound. That is to say,
if Algorithm 2 outputs “Entangled”, psz is entangled with
probability larger than 1—Ke.

To summarize, we have proposed two variational entanglement
detection methods. Algorithm 1 is deterministic in the sense that
whenever it outputs “Entangled”, one can safely assert that p,z is
entangled. On the other hand, Algorithm 2 is probabilistic in the
sense that even if it outputs “Entangled”, one can only declare that
pag is entangled with certain success probability. Nevertheless,
when the number of decomposed operations in Eq. (1) with non-
zero coefficients is large while the simulation cost y is relatively
low, the latter method may be beneficial. In this case, one can
reduce the number of iterations via sampling and thus save
computational resources. Algorithm 2 scarifies precision for
efficiency in entanglement detection.

Algorithm 2. Probabilistic VED
1: Input: 2n-qubit quantum state p,s, decomposition in Eq. (1) of
the positive map N, parameterized quantum circuit U(a) with
initial parameters a, error tolerance &, and fail probability €.

2: Initialize L'(a) = 0;

3: Compute y defined in Eq. (9) and set M = 2y? log(2/¢) /8%
4:forallm=1,---,M do

5: Apply U, to \0>®2" and obtain test state |¢) = Uq|0)®?";

6

: Sample a quantum operation om
probability dlstrlbutlon {Po}oea In Eq. (
coefficient of O™ in Eq. (1);

) from A accordlng to the
; Let ™ be the
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7: Input pus and compute the overlap ¢™ := (p|O™ (p)|p)
using the quantum circuit in Fig. 1;

8: Compute L™ = ysgn (rim)c(m);

9: end for

10: Compute the loss function L'(a) = £ S"M_ (M)

11: Perform optimization methods to minimize L'(a); terminate
the optimization if the error tolerance is satisfied: L' (a)< — §;

12: Output “Entangled” if the optimized L'(a)< — 6.

Prominent positive maps

In section “Quantum entanglement detection” we have outlined
the general deterministic and probabilistic VED frameworks for
detecting entanglement via positive map criterion. In this section,
we elaborate on three prominent positive maps—the transpose
map>*, the reduction map®’, and the enhanced reduction
map>®>’—to illustrate how the deterministic VED framework
works. We choose the set of NISQ implementable quantum
operations A to be the set of Pauli channels induced by Pauli
operators from the Pauli set P, i.e.,

A= {P|P() =P()P,P € Py}. (13)

For each of the three positive maps under consideration, we firstly
decompose it w.r.t. A as in Eq. (1) and then adopt the variational
framework summarized in Algorithm 1 to fulfill entanglement
detection. However, we remind that not all positive maps can be
decomposed w.r.t. the set of Pauli channels.

Here are remarks for the three criteria under consideration.
First, the reduction criterion is strictly weaker than both the
transpose criterion and the enhanced reduction criterion, in the
sense that the states that can be detected by the first criterion
can also be detected by the latter two criteria. Second, there is
no inclusion relation between the transpose criterion and the
enhanced reduction criterion. That is, there are states that can
be detected by one but not by the other. As so, given an
unknown state, one may execute VED twice. One adopts the PPT
criterion, and the other adopts the enhanced reduction criterion.
The state is necessarily entangled if at least one of these two
VEDs outputs “Entangled”. We also show by example how VED
works in qutrit systems in Supplementary Note 2, utilizing the
Choi map®8°°,

PPT criterion. A necessary condition for entanglement detection
is the positive partial transpose (PPT) criterion®*, which we briefly
review as follows. Let pyp be a bipartite quantum state. We can
express it as

Pag = Zaijk/|i> (ila @ k) (I, (14)
iiki
where {[i}}; and {|k)}, are the computational bases of A and B,

respectively. Its partial transpose with respect to system B is
defined as

05 = (ida ® T5)(0ag) (15)
= > agli) (1@ (R () 16)

i
= ayali) (jl @ 1) (K, (17)

i

where Tz denotes the transpose map on system B. The PPT
criterion says that if pap is separable, then pgg > 0. Conversely, the
negative spectrum witnesses entanglement of p,s. What's more,
the PPT criterion is not only necessary but also sufficient for
separability of the 2 ® 2 and 2 ® 3 cases?>%061,

We begin with the two-qubit bipartite quantum state case.
Notice that the qubit transpose map admits the following
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decomposition w.r.t. A specialized in Eq. (13):
o+ XpX — YpY + ZpZ

T(p) = 5 :

where X,Y,Z are the Pauli matrices. The validity of this

decomposition can be checked by direct calculation. Substituting
Eq. (18) into Eq. (17), we obtain

P55 = (ida ® T5)(0s5) (19)

(18)

1
=3 (o + XspXs — YspYs + Z30Z5), (20)

where the quantum operation XgpsXs should be understood as (/4
® Xp)pas(la ® Xp), and similarly for YzoYp and ZgpZp. Adapting the
decomposition in Eq. (20) into Algorithm 1, we successfully apply
the proposed VED to accomplish the PPT criterion in the qubit case.

Now we show the above detection method can be generalized
to the multi-qubit bipartite quantum state case. Let B=B;B, --- B,
be a composite system with n qubits, i.e,, B; represents the ith qubit
system. A key observation is that the transpose operation satisfies
the tensor product property: transposing the composite system B is
equivalent to transposing the local qubit systems B; individually.
More precisely,

n
Ts = X) Ts, 1)
i=1

where Tp, is the transpose operation on the ith qubit. Equations
(21) and (18) together give Tg as a linear combination of 4" Pauli
channels in total. Using this decomposition, we may apply VED
(Algorithm 1 or Algorithm 2) to accomplish the multi-qubit PPT
criterion deterministically or probabilistically.

Reduction criterion. In this section, we first review the reduction
criterion® and then propose a variational algorithm implementing
this criterion within the VED framework. Let

RBHB(XB) = TF[XB]IB — XB7 (22)

which is known as the reduction map. The reduction criterion says
that if a bipartite quantum state p,z is separable, then it must hold
that

Opg = (idA ® RBHB)(pAB) >0. (23)

Equivalently, if o4z has negative eigenvalues, then pgz is
entangled. It is based on this observation that our variational
algorithm works.

To apply the framework in the section “Quantum entanglement
detection”, we have to first decompose Rp g into a linear
combination of Pauli channels. Indeed, we can do so since

Re—5(0g) :=Trloglls — pg (24)
1
=57 >_ Ploa)ls — g (25)
PeP,
1-2" 1
=5 Peton Z P(pg)s (26)
PN

where the second equality follows from the twirling property of
Pauli channels®?, Exercise 4.7.3. Using this decomposition, we can
call Algorithm 1 or Algorithm 2 to accomplish the reduction
criterion. Specially, in the qubit case where n=1, the reduction
map is of the form

_ —p+XpX+ YpY + ZpZ

As one might see, deterministic VED using the reduction
criterion is not efficient in the many qubits case since it has to
compute exponentially many overlaps: for a 2n-qubit bipartite
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quantum state, one has to compute about 4” overlaps. Notice that
the probabilistic VED using the reduction criterion is slightly better
than the deterministic one since the sampling cost satisfies y = 2".
The quasi-probability sampling method does not show notable
advantages over the deterministic method for the positive maps
used in our work. However, the probabilistic VED provides a
different perspective to reduce the cost using the quasi-
probability sampling technique and it may be useful for
entanglement detection via other positive maps. In the section
“VED based on reduction criterion without decomposition”, we
also propose another entanglement detection method (cf.
Algorithm 3) with better efficiency in measurement cost by
exploring the simple structure of the reduction map in Eq. (22) and
showcase the efficiency of Algorithm 3 compared to the regular
VED using typical entangled states.

Enhanced reduction criterion. In this section, we consider an
enhanced version of the reduction map>%°7 for bipartite quantum
states. This enhanced criterion is based on an elementary positive
map which operates on state spaces with even dimension. It is
known that the enhanced reduction criterion detects many bound
entangled states (states that satisfy the PPT criterion). As before,
we first review this enhanced reduction criterion and show how to
combine it with the VED framework proposed in the section
“Quantum entanglement detection” to detect entanglement.

Define the following anti-symmetric unitary in an n-qubit
Hilbert space:

Uy = antidiag(1, —1,1,—1, ... ,1,—1), (28)

where antidiag means anti-diagonal. For example, when n = 2, the
corresponding anti-symmetric unitary has the form

0 0 0 1
0 0 -1 0 ,

V=] o 1 o ol =X®M (29)
10 0 0

Indeed, one can check that the n-qubit U, can be decomposed w.
r.t. the Pauli set as U, =X® --- ® X® i¥, where there are n—1 X
operators in the tensor product. Based on U, we define the
following map>®

Ks—s8(pg) := Ra—s(ps) — UaTs(p)Ul, (30)

where R .5 is the reduction map defined in Eq. (22) and T is the
transpose map defined in Eq. (17). This map has been shown to be
positive but not completely positive®®. What's more, this map
improves the reduction criterion and can detect bound entangled
states that cannot be detected by the PPT criterion. Substituting
the Pauli decomposition in Eg. (26) of R and the Pauli
decomposition in Eq. (21) of T into Eqg. (30) and regrouping the
Pauli terms, we obtain a Pauli decomposition of I, where there is
a total number of 4" Pauli terms. Using this decomposition, we can
use VED (Algorithm 1 or Algorithm 2) to accomplish the enhanced
reduction criterion.

Resource cost and barren plateaus

Note that another way to detect and quantify entanglement of a
state pyp is to obtain its density matrix via quantum state
tomography®®. Full density matrix reconstruction of an unknown
(na + ng)-qubit state in the worst-case costs exponential copies of
the state®*%°, e.g., Q(4™*") measurement results are necessary to
reconstruct a matrix close to p in terms of trace distance®. Using
the learned density matrix, we can either numerically apply a
positive map on it or compute the fidelity between p,z and any
entangled target states. However, such methods are resource-
demanding compared to the VED framework.

Published in partnership with The University of New South Wales
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To use the decomposed maps for entanglement detection on
the state pap we can apply them either to subsystem A or to
subsystem B, which requires poly(D)4™"""e} measurement
results with circuit depth D in optimization loops. Under the
assumption that the PQC could be well trained, our method is
considerably better than the state tomography method. The
barren plateaus phenomena might weaken the advantage of our
method over the state tomography in terms of the measurement
cost. However, for large-scale quantum systems, our method could
work in the proof of concept while computing the minimum
eigenvalue in the tomography method is extremely difficult. We
further elaborate the barren plateaus problem from different
aspects. In particular, methods based on the state tomography
need vast memory to store and process the density matrix on a
classical computer, which are unbearably resource-demanding as
the scale of the number of qubits increases. The VED framework,
on the other hand, does not require such classical memory and
post-processing.

As our current methods use a global cost function and choose a
hardware-efficient ansatz, it is possible that VED exhibits a barren
plateau, resulting an exponentially suppressed gradient with
respect to the problem dimension®®. Under this circumstance,
there exists a vast flat area on the loss/optimization landscape.
This phenomenon is known as the barren plateau (BP) and is
independent of the optimizer utilized, meaning that a gradient-
free optimizer would not help in mitigating this phenomenon®’.
Furthermore, noise and entanglement could also induce BP>%8,

In order to mitigate BP, one can adopt the following strategies:
variable structure ansatzes®®~’', layerwise learning’?, meta-
learning”3, and parameter initialization and parameter correlation
strategies’*”°. Enormous evidences show that a local cost function
could help mitigate BP by extending the trainable circuit depth to
a shallow level O(log(n))*. What's more, we can suppress the
hardware noise using various error mitigation techniques (see,
e.g., refs, 414276-79) fyrther improving the optimization results. By
exploiting the above methods and continuous progresses in the
areas of barren plateau and error mitigation, we believe that the
effect and practicability of our VED framework could be further
improved.

VED based on reduction criterion without decomposition

In the section “Prominent positive maps” we have shown how VED
uses the reduction criterion to detect entanglement; it works by
decomposing the reduction map R into a linear combination of
Pauli channels and then variationally estimate the minimal
eigenvalue of the averaged output state.

Here we propose another variational entanglement detection
algorithm for the reduction criterion, motivated by the simple
structure of the reduction map. The intuition behind this protocol
is as follows. We know that pp is entangled if Rg_5(pqg) is not
semidefinite positive. Using the variational characterization of a
Hermitian operator's minimum eigenvalue [see Supplementary
Note 1], this means that

Hp]il’;l(lHRBHB(pAB”w) (31)
= mi?(l/)WA ® Pg — Pag) W) (32)
= ‘Tir;{Tr[lpoB] — Tr[Waspasl} <0, (33)

where the minimization ranges over all pure bipartite quantum
states | p) in system AB, Yz = |@) (W|,5 and Yy := Tra,g. From
Equation (33), one can see that it suffices to compute the
difference of two overlaps and then variationally estimate the
minimal eigenvalue. The crucial point is that the number of
overlaps is independent on the dimension of the n-qubit system B.
This detection method could save a large amount of computing
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resources when n becomes large. The improved VED based on the
reduction criterion is summarized in Algorithm 3.

Algorithm 3. Improved VED based on reduction criterion

1: Input: 2n-qubit quantum state p,s, parameterized quantum
circuit U(a) with initial parameters a, and tolerance §;

2: Apply Ula) to |00),, on system AB and obtain the test state
W)as = U(@)[00) 455

3: Compute the overlap between state ¥z and pg on subsystem
B using the Swap Test and obtain ¢; = Tr[@zg);

4: Apply U(a) to |00),, on system AB and obtain the test state
Y)as = U(@)[00),45;

5: Compute the overlap between state ¢, and pag using the
Swap Test and obtain ¢; = Tr[YgPas);

6: Compute the loss function L(a) = ¢;—¢y;

7: Perform optimization methods to minimize L(a); terminate
the optimization if the error tolerance is satisfied: L(a) < —&.

8: Output “Entangled” if the optimized L(a) < —6.

To showcase the advantage of the improved VED, we use the
reduction map’s simple structure exploited by this algorithm to
estimate (0|Rp_5(paz)|0) for pas = |W) (W| being the four-qubit
generalized W state, where

W) — %(\1000) +10100) + [0010) + [0001)), (34)

and both local systems have two qubits. The simulation results are
summarized as box plots and compared to the estimation
obtained by the Pauli channel decomposition of the reduction
map in Fig. 3. When taking the same number of measurement
shots, the method used by Algorithm 3 gives estimation results
more concentrated in a range close to the ideal value than the
Pauli channel decomposition method adopted by the standard
VED. Thus, the improved VED can achieve the desired accuracy
using fewer measurement shots, which means that fewer copies
of the input quantum state are required.

We remark that this idea can also be adopted to improve the
efficiency of VED using the enhanced reduction criterion.

VED
—— Improved VED
0.601 —— Theory

1 g
TH OB T

320 640 960 1280 1600
Number of shots

T
N

Estimated (O|Rg-5(0a5)|0)

0401

Fig. 3 Comparison between VED and improved VED on estimate
accuracy. The overlap (0|Rp_5(p45)|0) is estimated using the
reduction map's Pauli decomposition (Equation (26) used in VED)
and its simple structure (Eq. (33) in the improved VED), where pg; is
the four-qubit generalized W state. The methods are simulated
under five different numbers of measurement shots, and for each
given number of shots, they are, respectively, repeated 50 times. The
distributions of both methods' estimations are summarized in box
plots, where each box extends from the first quartile to the third
quartile of the corresponding data, with a line at the median. The
whiskers extend to the most extreme data points within 1.5 times
the interquartile range. The red horizontal line gives the theoretical
value for reference. The improved VED (cf. Algorithm 3) achieves a
better performance.
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Quantum entanglement quantification

One of the most well-known entanglement measure is the
logarithmic negativity®®®', which has various applications in
quantum information theory. For a bipartite state pgap, its
logarithmic negativity is defined as

En(pag) := log ||PAT?3H1- (35)

Based on the recently developed near-term quantum algorithm
for trace distance estimation® and the fact that Ey is defined via
the transpose map Tz we introduce a variational quantum
algorithm to estimate Ey using an ancillary qubit system R.
According to®<eroay 31 it holds that

loklls = 2maxTr(0) (0];Qs — Trozg (36)

— 2maxTr|0) (0};Qr — 1, (37)

where Qg = TragQasr, Qasr = U(pys @ (0) (0[z)UT, and the max-
imization ranges over all unitaries on the composite system ABR.
Note that the second equality follows from the fact that Ty is trace-
preserving. Following the idea of VED, we may decompose the
transpose map T appeared in the operator Qagr (correspondingly,
Qg) into a linear combination of Pauli terms via Egs. (20) and (21),
compute the overlaps in Eq. (37) one by one, and then
variationally estimate the maximal value. For illustrative purposes,
we give Algorithm 4, the variational logarithmic negativity
estimation (VLNE), as an example of estimating the logarithmic
negativity of a two-qubit quantum state p,p. However, we
emphasize that method outlined in Algorithm 4 can be easily
generalized to quantify multi-qubit bipartite entanglement, as the
transpose operation satisfies the preferable tensor product
property in Eqg. (21). What's more, Algorithm 4 can be modified
to use the sampling technique to estimate the average state,
following the idea illustrated in Algorithm 2.

Algorithm 4. Variational logarithmic negativity estimation
1: Input: a 2-qubit quantum state p,z and parameterized circuit
Upxgr(a) with initial parameters a;
2: Apply Uagrla), respectively, to

Pas ® [0) (Olg, (38)
(Ia @ X5)Pag(la ® X5) ® [0) (O], (39)
(Ia ® Yg)pas(la @ Yp) @ 10) (0[5, (40)
(Ia ® Z)pag(la @ Zg) @ |0) (O, (41)

and obtain the states o, 0", 0, 6®, respectively.
3: Obtain o; = Tr[o,@\O) (0]g] for j=0,1,2,3 by measurements
on system R.
: Compute the loss function £y := —(0¢ + 01 — 05 + 03)/2.
: Perform optimization methods to minimize £, (a);
: Compute B = 2|£;] — 1 as the estimated trace norm of ng;
: Output log 8 as the estimated logarithmic negativity.

NOYU» b

One may also evaluate the entanglement measures®28* based
on the sandwiched Rényi relative entropy®>#® of order 1/2, making
use of the recently proposed variational quantum algorithm
estimating the fidelity between two quantum states®.

Experiments on IBMQ

In this section, we discuss how to apply the VED framework to
detect the two-qubit maximally entangled state |®) := (]00) +
|11))/+/2 on IBM-Q superconducting quantum hardware acces-
sible to the public. The specific quantum device used is ibmg-
santiago (5 qubits) with a quantum volume of 32. The positive
map adopted here for detection purpose is the qubit reduction
map Rp_pg defined in Eqg. (22). After implementing the
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[4)

‘0> ] Ry(a2) NP

Fig. 4 Circuit for experiments on IBMQ. This parameterized two-
qubit quantum circuit U(a) is used for preparing the test state y,z(a)
on the ibmg-santiago hardware. The parameters a are randomly
initialized as (a,, a;, a3) = (3.2292, 4.8579, 5.4691).

decomposed reduction map by 4 Pauli terms as Eq. (27), we use a
parameterized quantum circuit U(a) to prepare four identical test
states 5(a) = U(@)|00) (00],5U (@) and compute the loss
function defined in Eq. (8). The PQC used is depicted in Fig. 4
with three randomly initialized parameters a = (a;, ay, as). During
the optimization procedure, we apply the gradient descent
algorithm to guide the learning process where the analytical
gradient is calculated via the following parameter-shift rule®’

oL efar+) o5

Due to the finite sampling restriction for measurements, the
optimization procedure essentially falls into the regime of Stochastic
Gradient Descent (SGD)*. The optimized loss values converges to
Lmin &~ —0.43. The gap between the experiment data and simulation
result Anin = —0.5 is due to various hardware noises on the ibmg-
santiago processor. One can further adopt error mitigation methods'®
to improve the result. This result proves the validity of our VED
framework. Note that if we adopt the termination setup in Algorithm
1, it will require much fewer optimization iterations (4-5 rounds are
sufficient) to obtain the detection result. As mentioned in ref. &, the
communication bottleneck between the IBM-Q hardware and classical
optimizer blocks us from efficiently conducting experiments without
any specified reservation. This leads to a 9-minutes waiting time on
average for each circuit evaluation from the IBM-Q cloud service. We
also implement the probabilistic detection Algorithm 2 for compar-
ison. In the experiment, we set the backend to the Aer simulator
which imitates the behavior of ibmg-santiago and choose & =0.01
and 6 = 0.1. The experimental results reveal that the probabilistic VED
achieves the same detection precision level compared to the
deterministic VED. As comparison, we conduct numerical simulations
on the Baidu Quantum Leaf platform® and obtain similar results. We
summarize the experimental and numerical results in Fig. 5.

Numerical simulations for entanglement detection

In this section, we carry out numerical simulations that apply VED
to detect a variety of bipartite quantum states of interest to
investigate the performance of VED and its motivated entangle-
ment quantification algorithm. All simulations, including optimiza-
tion loops, are conducted using the Paddle Quantum®® toolkit on
the PaddlePaddle Deep Learning Platform®’

Isotropic states. The n-qubit isotropic state family (n is even and

each local system has n/2-qubits) is defined as®2fa (321
Ia
PO (p) == pOas + (1 — p) 22 (43)

2"
where p€[0,1] is a parameter, Oy is the n-qubit maximally
entangled state, and /g is the identity operator in AB in which
A=A, - A,y and B=B; -+ By, The qubit systems {A;}; are at
Alice’s hand, while the qubit systems {B;}; are at Bob's hand.
Intuitively, the isotropic state is a convex combination of the
maximally entangled state @45 and the maximally mixed state /45/
2". It has been shown that p,'%o( p) is separable (w.r.t. the A: B cut)
if and only if p < 1/2"2 +1)°?
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0.3 T T T T T T T T

02F : — G- Deterministic detection on ibmg-santiago s
A —&— Deterministic detection on Quleaf Simulator
< Probabilistic detection on noisy Aer simulator 4

Loss Function

0 2 4 6 8§ 10 12 14 16 18
iterations

Fig. 5 Estimated minimum eigenvalue A, by VED using the
reduction criterion on the Bell state |®). The red square curve
records the results of Algorithm 1 on ibmg-santiago with shots =
8192 for each circuit evaluation. The cyan diamond curve records
the results of Algorithm 2 by choosing 6 =0.1 and £ = 0.01. The blue
circle curve records the numerical results on the Baidu Quantum
Leaf platform®. Learning rate in the gradient descent algorithm is
set to be LR=0.5.

0.2,

o

=
<;r-

©
:

o
T

Minimized loss value L(a)

03 B
041 * ~x o 1
05k ——Reduction map (the) N
| |- = ~Enhanced reduction map (the)
0.6 F Transpose map (the)
O Reduction map (sim)
07} ¢ Enhanced reduction map (sim)
Transpose map (sim) 1]
-0.8

Isotropic state parameter p

Fig.6 Numerical results on the four-qubit isotropic states defined
in Eq. (43). Each line depicts the smallest eigenvalue of every
isotropic state with parameter p € [0, 1] under the corresponding
map. This line of the smallest eigenvalues is a lower bound of the
loss function L(a). Each marker depicts the minimized loss value
obtained by simulations (sim) of Algorithm 1 on a chosen isotropic
state, aligning with the theoretical (the) line.

We numerically carry out Algorithm 1 together with the
three prominent positive maps—the PPT criterion, the reduc-
tion criterion, and the enhanced reduction criterion—intro-
duced in the section “Prominent positive maps”, using four-
qubit isotropic states as inputs. The minimized loss values of
these three maps obtained by our simulations on the isotropic
states are represented by different markers in Fig. 6. As can be
seen from this figure, VED can successfully identify the range of
p for which the corresponding isotropic state can be detected
by each positive map. The markers representing results from
simulations fall on the lines that give the minimums of the loss
function L(a), verifying the validity and viability of our VED
framework. Note that for detecting entanglement in four-qubit
isotropic states, all three maps are both necessary and
sufficient. However, this phenomenon is not universal for all
four-qubit states, as we shall see in the experiment using
Breuer states.
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Table 1. Estimated A, by VED using the reduction criterion on
isotropic states with up to 10 qubits and the noise parameter p =0.7.

Number of qubits

n=2 n=4 n==6 n=28 n=10
VED —0.2750 —0.4687 —0.5793 —0.6378 —0.6663
Theory —0.2750 —0.4688 —0.5797 —0.6387 —0.6690

Each value shown in the VED row is the average of optimized losses from
10 independent runs of 100 training iterations. When estimating each
overlap, we use a circuit as shown in Fig. 9 of depth n/2, with randomly
initialized parameters and number of shots 8192. The Theory row gives the
theoretical Ay, for comparison.

To explore the barren plateau phenomenon that might be
possible in our proposed VED algorithms, we carry out
extensive numerical simulations on isotropic states by ranging
the total number of qubits from 2 to 10 and fixing the noise
parameter p to 0.7. In the following Table 1, we compare the
average loss achieved by VED using the reduction criterion to
the theoretical minimum, assuming that the number of shots
does not scale with the number of qubits when estimating
each overlap induced by the decomposition. As the number of
qubits increases, there exhibits no large discrepancy between
the estimated value by VED and the theoretical value. The
scaling behavior of the optimized loss suggests that the VED
algorithm is resilient to the barren plateau phenomenon when
detecting bipartite states with a moderate number of qubits.

Breuer states. As we have mentioned in the section “Prominent
positive maps”, there are states that can be detected by the
enhanced reduction criterion yet cannot be detected by the PPT
criterion. In this section, we use the proposed VED framework to
numerically consolidate this statement. The four-qubit Breuer
state family is defined as%, Eq. (7).

2 0 o0 o0
0 1420 1-4A 0
Breuer 6 6
Pag - (A) = o 1em ; (44)
0 A o
0 o0 0o 12

3

where A €0, 1] is a parameter, A=AA,, and B = B;B,. The qubit
systems A; and A, are at Alice’s hand while the qubit systems B,
and B, are at Bob's hand. It has been shown that pBeue is
separable (w.rt. the A:B cut) if and only if A=0 and can be
detected by the enhanced reduction criterion®®. On the other
hand, it has positive partial transpose if and only if A< 1/6°,
witnessing the power of the enhanced reduction criterion.

Following the same line of the case of the isotropic state, we
carry out Algorithm 1 on the three criteria using four-qubit Breuer
states as inputs. The minimized loss values obtained by our
simulations on selected Breuer states are represented in Fig. 7 by
markers, which again align with the theoretical lines. From the
numeric results, we can see that while the enhanced reduction
criterion is still necessary and sufficient for entanglement
detection in the four-qubit Breuer states, neither the reduction
criterion nor the PPT criterion can detect all entangled states in
the Breuer state family, attesting the advantage of the enhanced
reduction criterion in this case.

Numerical simulations for logarithmic negativity estimation

For simulations of variational entanglement quantification with
logarithmic negativity, we adopt the hardware efficient ansatz
used for trace distance estimation in ref. © where the circuit depth
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Fig.7 Numerical results on the four-qubit Breuer states defined in
Eq. (44). Each line depicts the smallest eigenvalue of every Breuer
state with parameter p € [0, 1] under the corresponding map. This
line of the smallest eigenvalues is a lower bound of the loss function
L(a). Each marker depicts the minimized loss value obtained by
simulations (sim) of Algorithm 1 on a chosen Breuer state, aligning
with the theoretical (the) line.
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Fig. 8 Numerical results on the two-qubit isotropic states. The
blue line represents the precisely calculated logarithmic negativity
of isotropic states with parameter p €[0, 1]. The yellow markers
depict the estimated logarithmic negativities by simulations of
Algorithm 4 on selected isotropic states.

is 4. The simulations are carried out on two-qubit isotropic states,
which is defined as

i (p) 1= pOas + (1 p) 22 (@5)
where D45 is the two-qubit maximally entangled state. As shown
in Fig. 8, the logarithmic negativity of a two-qubit isotropic state is
positive if and only if its parameter p > 1/3, which matches the
range of p where the corresponding isotropic states are
entangled. The estimated logarithmic negativities by our method,
which are represented by markers in Fig. 8, agree with the
precisely calculated values given by the blue line.

DISCUSSION

In this paper, we combined two techniques that find crucial
applications in the NISQ quantum devices, the variational quantum
algorithms and the quasi-probability decomposition method, to
propose the variational entanglement detection (VED) and
variational logarithmic negativity estimation (VLNE) frameworks,
contributing feasible solutions to detect and quantify
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entanglement on near-term devices. VED is built upon the positive
map criterion and works as follows. Firstly, it decomposes a chosen
positive map into a linear combination of NISQ implementable
quantum operations. Then, it variationally estimates the minimal
eigenvalue of the output state of some positive map acting on the
target bipartite state. Two methods are proposed to generate the
output state: the first one averaged the output states according to
the quasi-probability distribution; the second one estimated the
average via the sampling technique. At last, it asserts that the
target state is entangled if the optimized minimal eigenvalue is
negative, guaranteed by the positive map criterion. We elaborated
three well-known positive maps to illustrate how the VED
framework is applied. Following the idea of VED, VLNE variationally
computes the log-negativity entanglement measure, relying on a
linear decomposition of the transpose map into Pauli terms and
the recently proposed trace distance estimation algorithm.
Experimental and numerical results on various bipartite states of
interest have validated the proposed entanglement detection and
quantification methods.

We expect that the VED framework can be upgraded to detect
more entangled states. A crucial step towards this aim is to
explore what kind of positive maps can be decomposed into a
linear combination of Pauli channels. In the section “Quantum
entanglement quantification” we showed by case how to
variationally compute the log-negativity entanglement measure.
It would be meaningful to design quantum algorithms to estimate
other distance-based entanglement measures (see, e.g., refs. 93-9°),

METHODS
Entanglement detection via positive maps

Let pag be a bipartite quantum state in the composite system AB. By
definition pup is separable if it can be decomposed into a convex
combination of tensor products of states describing local systems as®®

Pag = pr‘(px> <()UX|A ® |(/)x> <(/)x|B* (46)

where p, >0, 3,p, =1, and {|¢,)}, and {|¢,)}, are two sets of pure states
in systems A and B, respectively. Otherwise, pp is entangled. Given the
definition, it is natural to ask whether a given unknown bipartite quantum
state is separable or entangled, known as the separability problem. This
problem has been shown to be NP-hard®’?8, There are many separability
criteria that have been proposed to determine the separability or
entanglement of bipartite quantum states as necessary conditions'?%3,

One of the most celebrated criteria for distinguishing separable states from
entangled states is the positive map criterion. The core of the positive map
criterion is that one subjects a subsystem of psz to a positive (but not
completely positive) map Az that preserves the positivity of inputs. If pag is
a product state, i.e, it is of the form ps ® pg, the resulting operator p, ® N (pg)
is still positive. Consequently, due to the linearity, an arbitrary separable state is
mapped into some positive operator by this map. On the other hand, if pgp is
entangled, the output operator Ng_5(p,5) May be no longer positive; the
transpose map is a prominent example®*. That is to say, the negative spectrum
of the output operator indicates entanglement of the input state.
Mathematically, the positive map criterion states that a bipartite quantum
state pyp is separable if and only if for arbitrary system C and arbitrary positive
(but not completely positive) map NVg_c, it holds that Ng_.c(p,5) > 0%.

Despite its proven efficiency in entanglement detection, the positive
map criterion is not directly applicable in practice, especially on recent
NISQ devices. This is an immediate consequence of the fact that
generically positive but not completely positive maps do not represent
physically implementable quantum operations®® and thus cannot be
realized in near-term quantum devices. In this work, we showed how to
overcome this obstacle and employ the positive map criterion to detect
entanglement on NISQ devices.

Ansatz design

For the entanglement detection purpose, we adopt the circuit ansatz
shown in Fig. 9 to prepare the test state |()) 5. It consists of parameterized
single-qubit gates Us(6, ¢, ) = R.($)R,(O)R.(¢) and circular layers of CNOT
gates. Note that this ansatz can be easily generalized to multi-qubit case.
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Us(80,0,00.,1.60.2)

| |

| |

: U3 (00,3, 60,4, 00,5) : -
: Us(0o,6,060,7,00,8) :xz Us (02,6, 02,7, 02.5)

Fig. 9 Three qubit parameterized ansatz U(a) used for VED. The
quantum circuit within the dotted block is repeated twice.
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