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Abstract
Estimating the difference between quantum data is crucial in quantum computing. However, as
typical characterizations of quantum data similarity, the trace distance and quantum fidelity are
believed to be exponentially-hard to evaluate in general. In this work, we introduce hybrid
quantum–classical algorithms for these two distance measures on near-term quantum devices
where no assumption of input state is required. First, we introduce the variational trace distance
estimation (VTDE) algorithm. We in particular provide the technique to extract the desired
spectrum information of any Hermitian matrix by local measurement. A novel variational
algorithm for trace distance estimation is then derived from this technique, with the assistance of a
single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth
circuits due to a local cost function. Second, we introduce the variational fidelity estimation
algorithm. We combine Uhlmann’s theorem and the freedom in purification to translate the
estimation task into an optimization problem over a unitary on an ancillary system with fixed
purified inputs. We then provide a purification subroutine to complete the translation. Both
algorithms are verified by numerical simulations and experimental implementations, exhibiting
high accuracy for randomly generated mixed states.

1. Introduction

With surging advances in material, manufacturing, and quantum control, quantum computing has been
driven into the noisy intermediate-scale quantum (NISQ) era [1], which requires novel algorithms running
on a limited number of qubits with unwanted interference of the environment. The hybrid quantum–
classical computation framework [2] is regarded as well-suited for execution on NISQ devices and is
expected to show practical near-term applications in quantum chemistry and quantum machine learning
[3–5]. Specifically, hybrid quantum–classical algorithms utilize the parameterized quantum circuits (PQCs)
[6] and classical optimization to solve problems. Such idea was applied to many key areas including
Hamiltonian ground and excited states preparation [7, 8], quantum compiling [9], quantum classification
[10–12], Gibbs state preparation [13–16], entanglement manipulation [17], and quantum linear algebra
[18–22]. We refer to [23–25] for a detailed review.

Applications mentioned above and many other quantum information tasks suffer from unwanted
interactions with the environment when implemented by real-world quantum systems, leading to errors in
their working qubits. Thus, metric estimation for quantum states is vital to benchmark the tasks’
implementation. As scalable quantum computers and quantum error correction are still on their way [26],
estimating metric on a near-term device is essential to the verification of quantum information processing
tasks and quantify how well quantum information has been preserved. Moreover, metric estimation is also
an integral part of quantum machine learning [3–5]. For example, metrics could play the role of the loss
function in state learning tasks [27, 28].
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The trace distance and fidelity are two typical metrics to quantify how close two quantum states are
[29–31]. Given two quantum states ρ and σ, the trace distance D(ρ,σ) and the fidelity F(ρ,σ) are defined as
follows:

D(ρ,σ) :=
1

2
‖ρ− σ‖1, (1)

F(ρ,σ) := Tr
√√

ρσ
√
ρ = ‖√ρ

√
σ‖1, (2)

where ‖ · ‖1 denotes the trace norm. When at least one of the states is pure, the task of fidelity estimation
reduces to the simple case of calculating the square root of the state overlap F(ρ,σ) =

√
Tr ρσ which can be

obtained by the swap-test [32]. Thus the trace distance in this case is bounded by 1 − F(ρ,σ) � D(ρ,σ)
�

√
1 − F(ρ,σ)2. However, evaluating these two metrics for mixed states is hard in general. One might

attempt to classically compute the two metric from the matrix description of quantum states ρ and σ

obtained via quantum state tomography. Nevertheless, this approach is infeasible due to the exponential
growth of the matrix dimension with the number of qubits. On quantum computers, evaluating the trace
distances is probably hard since even judging whether ρ and σ have large or small trace distance is known to
be quantum statistical zero-knowledge (QSZK)-complete [33], where QSZK is a complexity class that
includes BQP (bounded-error quantum polynomial time). Hence estimating fidelity and trace distance
could probably be hard even for quantum computers.

Several approaches have been proposed for the trace distance and fidelity estimation, and here we focus
on the case where the metric is between two unknown general quantum states. In [34], the authors
variationally estimate the truncated fidelity via a hybrid classical–quantum algorithm. The truncated fidelity
bounds the exact fidelity and is a good approximation of it when one of the states is known to have a low
rank. For the estimation of trace distance, several methods are proposed but only applicable in specific
quantum environments [35, 36]. To the best of our knowledge, no methods for estimating the trace distance
on general NISQ devices has been proposed yet.

To overcome these challenges, we propose the variational trace distance estimation (VTDE) algorithm as
well as the variational fidelity estimation (VFE) algorithm. First, we propose a method to estimate the
trace norm of an arbitrary Hermitian matrix H, and apply it to trace distance estimation by specifying
H = 1

2 (ρ− σ). In particular, we prove that local measurements on an ancillary single qubit can extract the
desired spectrum information of any Hermitian H conjugated by a unitary. By optimizing over all unitaries,
we can obtain the trace norm of H. Our method notably only employs a local observable in the loss
function evaluation, which saves us from the gradient vanishing issue with shallow circuits. Second, we
introduce a method to estimate the fidelity of general quantum states, which utilizes the Uhlmann’s
theorem. We observe that the fidelity can be estimated by optimizing over all unitaries on an ancillary
system via the freedom in purification. We also introduce a subroutine that works on NISQ devices to
purify quantum states. With the performance analysis of the purification subroutine, we show that only few
ancillary qubits are required if the unknown states are low-rank.

This paper is organized as follows. In section 2, we introduce the variational quantum algorithms for
trace norm and trace distance estimation. In section 3, we introduce the variational quantum algorithms for
quantum state fidelity estimation and its purification subroutine for mixed state learning. Numerical
experiments and experimental implementations on IBM superconducting device are provided to show the
validity of our methods. We finally deliver concluding remarks in section 4.

2. Variational trace distance estimation

This section introduces a VQA for estimating the trace norm of an arbitrary Hermitian matrix H, which
could be easily applied to trace distance estimation. Our method employs the optimization of a PQC,
requiring only one ancillary qubit initialized in an arbitrary pure state (typically |0〉〈0| in practice) and
single-qubit measurements. In this sense, our algorithm is practical and efficient for NISQ devices.

We will frequently use symbols such as HA and HB to denote Hilbert spaces associated with quantum
systems A and B, respectively. We use dA to denote the dimension of system A. The set of linear operators
acting on A is denoted by L(HA). We usually write an operator with a subscript indicating the system that
the operator acts on, such as MAB, and write MA := TrBMAB. Note that for a linear operator X ∈ L(HA), we
define |X| =

√
X†X, and the trace norm of X is given by ‖X‖1 = Tr|X|.

We first formulate the theory for the trace norm estimation, then we describe in detail the process of our
algorithm, followed by the numerical experiments.
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2.1. Estimating trace norm via one-qubit overlap maximization

Suppose on system HA ⊗HB we have a Hermitian matrix HAB that has spectral decomposition

HAB =

dAdB∑
j=1

h j
AB|ψj〉〈ψj|, (3)

with decreasing spectrum {hj
AB}

dAdB
j=1 and orthonormal basis {|ψj〉}. Here, for technical convenience, we

simply pad the spectrum with 0 s to ensure the expression in equation (3).
Before showing the main algorithm, we introduce an optimization method to obtain some information

of the spectrum of a given Hermitian matrix as follows.

Proposition 1. For any Hermitian matrix HAB ∈ L(HA ⊗HB) with spectral decomposition as equation (3),
respectively denote the dimension of HA, HB by dA, dB. It holds that

max
U

Tr |0〉〈0|AH̃A =

dB∑
j=1

h j
AB, (4)

where H̃A = TrB H̃AB, H̃AB = UHABU†, and the optimization is over all unitaries.

This proposition indicates that the optimization over unitaries can estimate the sum of several largest
eigenvalues of HAB.

The proof of proposition 1 can be found in appendix IA (https://stacks.iop.org/QST/7/015019/mmedia).
To apply proposition 1 to estimate the trace norm, we fix subsystem A to be single-qubit. In this case, for

arbitrary Hermitian HAB on d = 2n-dimensional quantum system HA ⊗HB, where HA = C2 (hence
HB = C2n−1

), the maximal expectation of measurements on system A gives us the sum of the first half
eigenvalues of HAB. It is now quite close to the trace norm of HAB, which is the sum of absolute values of its
eigenvalues. We take the final step to estimate the trace norm by appending a one-qubit pure state and
optimizing twice. Concretely, we derive the following theorem to ensure the validity of our algorithm.

Theorem 2 For any Hermitian HA on n-qubit system A, and any single-qubit pure state |r〉 on system R, it holds
that

‖HA‖1 = max
U+

Tr |0〉〈0|RQ+
R + max

U−
Tr |0〉〈0|RQ−

R , (5)

where Q±
R = TrA Q±

AR, Q±
AR = U±(±HA ⊗ |r〉〈r|R)U±†, and each optimization is over unitaries on system AR.

This theorem shows how to generally evaluate the trace norm of arbitrary H by optimization. The proof
of theorem 2 can be found in appendix IB.

We note that, since the target Hermitian matrix is in many cases (and can always be) written as the
linear combination of density matrix with real coefficients cj:

HA =
∑

j

c jρ
j
A, (6)

we have TrHA =
∑

j cj. Employing the information of TrHA we can save one optimization as the following
Corollary shows:

Corollary 3 For any Hermitian HA (written as equation (6)) on n-qubit system A, and any single-qubit pure
state |r〉 on system R, it holds that

‖HA‖1 =
∑
h

j
A>0

h j
A +

∑
h

j
A<0

− h j
A

= 2
∑
h

j
A>0

h j
A − Tr HA

= 2 max
U

Tr |0〉〈0|RQR −
∑

j

cj,

(7)

where QR = TrAQAR, QAR = U(HA ⊗ |r〉〈r|R)U†, and the optimization is over all unitaries on system AR.

Also in this case, maxU Tr|0〉〈0|RQR in practice can be evaluated by post-processing:

Tr |0〉〈0|RQR =
∑

j

cj Tr |0〉〈0|R(Uρ
j
A ⊗ |r〉〈r|RU†)R. (8)
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Figure 1. Diagram of VTDE. VTDE employs a single-qubit ancilla for arbitrary number of qubits of ρ and σ. The outputs
〈O〉ρ, 〈O〉σ are obtained by locally measuring the overlap with state |0〉R. Then the optimization of the measurement outcome is
undertaken by a classical computer (the green box). The unitary evolution on the coupled system is simulated by a
hardware-efficient ansatz, of which the single qubit rotation gates (Ry , Rz) are controlled by classical parameters θ.

Algorithm 1. Variational trace distance estimation (VTDE).

Input: quantum states ρA and σA, circuit ansatz of unitary UAR(θ), number of iterations ITR;
Output: an estimate of trace distance D(ρA ,σA).

Initialize parameters θ.
Append ρA and σA with single-qubit state |0〉R, respectively.
for itr = 1, . . . , ITR do
Apply UAR(θ) to ρA ⊗ |0〉〈0|R and σA ⊗ |0〉〈0|R, obtain the states ρ̃AR = UAR(θ)ρA ⊗ |0〉〈0|RUAR(θ)† and
σ̃AR = UAR(θ)σA ⊗ |0〉〈0|RUAR(θ)†, respectively.
Evaluate Oρ = Tr |0〉〈0|Rρ̃R and Oσ = Tr |0〉〈0|Rσ̃R by measurement on system R.
Compute the loss function L1 :=Oρ − Oσ .
Maximize the loss function L1 and update parameters θ.
end for
Output the optimized L1 as the trace distance estimate.

This means that we could use PQC, taking ρ
j
A as inputs, to perform the optimization for the trace norm

estimation. In next section we will adopt this strategy to estimate the trace distance, for which
H = 1

2 (ρ− σ).

2.2. VTDE algorithm

Based on corollary 3, we are now ready to show our trace distance estimation (VTDE) algorithm for
arbitrary quantum states ρ and σ. Figure 1 demonstrates the diagram of our algorithm.

Specifically, with HA = 1
2 (ρA − σA) and TrHA = 0, equation (7) could be written as

D(ρ,σ) =
1

2
‖ρA − σA‖1

= max
U

(
Tr |0〉〈0|Rρ̃R − Tr |0〉〈0|Rσ̃R

)
,

(9)

where ρ̃AR = U(ρA ⊗ |r〉〈r|R)U†, ρR = TrAρAR and σ̃AR = U(σA ⊗ |r〉〈r|R)U†, σR = TrAσAR. This
observation finally enables us to estimate the trace distance by optimization over unitaries, and the
algorithm is given in algorithm 1 in detail. In our VTDE algorithm, Tr |0〉〈0|Rρ̃R and Tr |0〉〈0|Rσ̃R are
evaluated successively, then the difference between them are maximized by a classical computer. In practice,
the ancillary pure state can be initially set as |r〉 = |0〉. We adopt a hardware efficient ansatz [37, 38]
consisting of parameterized single-qubit Ry and Rz rotations, along with CNOT gates on adjacent qubits as
entanglement gates (also see figure 1) to implement the tunable unitary evolution.

From algorithm 1 one can tell that our VTDE estimates the trace distance for arbitrary quantum states
without requiring any pre-knowledge. Furthermore, algorithm 1 and figure 1 imply that VTDE employs a
single-qubit ancillary qubit for any input size n of ρ and σ, and perform local (single-qubit) measurement
in each iteration. In this sense, VTDE is general and efficient for NISQ devices. Recall that algorithm 1 can
be adapted to trace norm estimation for any H with decomposition H =

∑
j cjρj based on corollary 3.

Given the VTDE, we briefly discuss analytic gradient and the gradient vanishing (barren plateau (BP)
[39]) issues. Analytic gradient enables us to perform gradient descent to optimize the parameters. As our
VTDE employs an hardware-efficient PQC, the parameter shift rule [40, 41] is capable in our case to obtain
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Figure 2. Learning processes of VTDE, where the input states ρ and σ are four-qubit GHZ state and its output after the
depolarizing channel. The different colors correspond to considered depolarizing channel parameters p = {0.1, 0.3, 0.5, 0.7, 0.9},
with p = 0.9 being the top two red lines. We denote the ideal trace distances by Dide and solid lines, and denote the estimated
ones by Dest and dashed/dotted lines.

analytic gradient. As for the BP from which many variational quantum algorithms may suffer. We remark
that our VTDE performs single-qubit measurements and takes the result as the loss function. This is
essentially equivalent to a local observable, which has been proved to have at worst a polynomially
vanishing gradient with a shallow PQC [42]. In this sense, our VTDE could avoid the BP issue when the
number of layers L ∈ O(log n).

We would like to remark that, the Naimark extension (see example 2.2 of [43]) together with the
property of trace distance that

D(ρ,σ) = max
0�P�1

Tr P(ρ− σ), (10)

also explain VTDE. Indeed our idea is to study the capability of PQCs in extracting spectrum information
from local measurements. Nevertheless, VTDE can be generalized for trace norm estimation of arbitrary H
(theorem 2 and corollary 3), where trace norm estimation in equation (10) does not hold if we simply
replace (ρ− σ) by a non-traceless H. This generalization can be lead to wider applications in quantum
information like the estimation of log negativity. Our intermediate product (proposition 1) also indicates
that the partial sum of the spectrum can be extracted by local measurements.

2.3. Numerical experiments

Numerical experiments are undertaken to demonstrate the validity and advantage of VTDE. All simulations
including optimization loops are implemented via Paddle quantum [44] on the PaddlePaddle deep learning
platform [45, 46].

We firstly estimate the trace distance between the four-qubit GHZ state |ψ〉 = 1√
2
(|0000〉+ |1111〉) and

its output after the depolarizing channel:

Depp(ρ) = p Tr ρ
I

24
+ (1 − p)ρ. (11)

In the experiment setting, we let ρ = |ψ〉〈ψ| and σ = Depp(ρ), where the channel parameters are
p = {0.1, 0.3, 0.5, 0.7, 0.9}. For the hyper-parameters, we set ITR = 120 and learning rate LR = 0.02.
Figure 2 shows the trace distance learned by VTDE versus the numbers of iterations. As one can see, for all
considered channel parameters, the trace distance between ρ and σ can be estimated accurately within
feasible iterations (< 120).

Next, we explore the required number of layers of the ansatz for input states with distinct ranks.
Specifically, we set the number of qubits n = 3 and Rank(σ) = 2, while Rank(ρ) ranges from 1 to 2n = 8.
We randomly sample 100 states for each number of ranks of σ, and compute the accuracy for circuits with
one, two and four layers. Here the accuracy is defined as Acc. = Dest/Dide, where Dest,ide are the estimated
and ideal trace distances, respectively. Hyper-parameters are the same as the previous experiment. Figure 3
summarizes the result, telling that the behavior of a four-layer circuit is more accurate and stable, while

5
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Figure 3. Trace distance learned by VTDE with different number of layers versus the rank of ρ. The curves connect the median
values in the boxplots displaying the distribution of the estimation of D between 100 sampled state pairs. Each curve corresponds
to the one-, two-, or four-layer case.

Table 1. Error analysis for VTDE between ρ = |+〉
and σ = Dephp(ρ). We choose p = 0.7 and repeat
the experiment 10 times independently.

Backends Mean Variance Error rate

Theoretical value 0.7 — —
Simulator 0.703 22 0.000 10 0.46%
ibmq_quito 0.643 12 0.000 25 8.13%

circuits with fewer layers perform badly and unstably for any rank of ρ, possibly due to the lack in
expressibility [47].

2.4. Implementation on superconducting quantum processor

We also apply our VTDE to estimate the trace distance between |+〉 state and itself affected by a dephasing
channel:

Dephp(ρ) = pZρZ + (1 − p)ρ. (12)

The result with comparison to the values achieved from simulation are listed in table 1. The experiments are
performed on the IBM quantum platform, loading the quantum device ibmq_quito containing five qubits.

The input state we choose here are ρ = |+〉 and σ = Deph0.7(ρ). On the quantum device, the input
state σ is prepared by applying two Ry gates on the working and ancilla qubits with parameters π/2 and
2 arcsin

√
0.7 ≈ 1.982 respectively, followed by a control-Z gate, then discarding the ancilla. Next, we

operate PQC on qubits, and use sequential minimal optimization [48] to optimize the parameters until the
cost converge to its maximum. We repeat ten independent experiments with same input states and
randomly initialized parameters.

As demonstrated in table 1, the estimates converges stably for the simulator and the quantum device.
Correspondingly, the achieved trace distance estimates by simulator (0.7032) is closer to the theoretical
values (0.7) than that of quantum device (0.643 12), which may caused by the quantum device noises.

3. Variational fidelity estimation

In this section, we introduce VFE as a hybrid quantum–classical algorithm for estimating fidelity in the
most general case where two mixed states are provided. The intuition of VFE lies in Uhlmann’s theorem
and the freedom in purification, based on which we prove that optimization over unitaries can obtain the
fidelity. The purification of each quantum state is required by the optimization, for which we design a
variational quantum state learning (VQSL) algorithm as a subroutine. Both VFE and VQSL employs PQC
to implement the optimization over unitaries. We give the theory behind and the process of VFE and VQSL,

6
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Figure 4. Workflow of VFE. VFE employs a purification subroutine to purify ρ and σ. The outputs 〈ψ|UR|φ〉 are obtained by the
swap test. Then the optimization of the measurement outcome is undertaken by a classical computer (the green box). The
unitary evolution on the ancillary system is realized by a hardware efficient ansatz.

respectively, followed by experimental results from a simulator and a five-qubit IBMQ superconducting
processor. The workflow of VFE is shown in figure 4.

3.1. Theory and algorithm for fidelity estimation

Suppose we have two unknown quantum states, ρA and σA, on system A. With arbitrary purification of ρA

and σA (denoted by |ψ〉AR and |φ〉AR, respectively), corollary 6 allows us to estimate the fidelity of ρA and
σA. As the prerequisite of corollary 6, we first introduce Uhlmann’s theorem and the freedom in
purification:

Theorem 4 (Uhlmann’s theorem [29]). Suppose ρ and σ are states of quantum system A. Then, for given
quantum purification |ψ〉AR of ρA on system AR,

F(ρA,σA) = max
|φ〉AR

|〈ψ|φ〉AR|, (13)

where the maximization is over all purifications |φ〉AR of σA on system AR.

Lemma 5 (Freedom in purification [29]). For two purifications |φ1〉AR, |φ2〉AR of σA on system AR, there
exists a unitary transformation UR such that

|φ2〉AR = (IA ⊗ UR)|φ1〉AR, (14)

Based on the fundamental properties of quantum fidelity discussed above, we observe that the following
optimization problem characterizes the fidelity function.

Corollary 6 For any quantum states ρA and σA on system A, and arbitrary purification |ψ〉AR and |φ〉AR of ρA

and σA, it holds that
F(ρ,σ) = max

UR
|〈ψ|AR(IA ⊗ UR)|φ〉AR|, (15)

where the optimization is over any unitaries on system R.

Corollary 6 gives us an elegant variational representation of the fidelity function that only requires
purification of input states and optimization over the ancillary system. Following this line of reasoning, we
design a VQA to estimate the fidelity of quantum states ρ and σ. We note that in algorithm 2 the procedure
of purifying ρ and σ is realized by VQSL as a subroutine, which will be presented in section 3.2. Our
method formulates the problem of directly calculating the fidelity between two mixed states into an
optimization procedure over the ancillary system of two purified states. At the cost of extra subroutines, this
approach could deal with arbitrary high-rank states as long as we provide enough ancillary qubits. For
numerical performance analysis, we refer to sections 3.3 and 3.4. Besides, we also derive the analytical
gradient of this loss function in appendix III, which is required for gradient-based classical optimization.

3.2. Subroutine—quantum state learning and purification

The task of quantum state learning is to find the correct unitary operation such that one could prepare any
target mixed state ρ from an initialized state (usually |0〉〈0| on each qubit). In reference [49], the method of
state learning for a pure state ρ, where Rank(ρ) = 1, is proposed. Our approach further generalizes it to
work for a mixed state ρ, where Rank(ρ) � 1. In order to implement our algorithm in NISQ devices, we

7
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Algorithm 2. Variational fidelity estimation (VFE).

Input: quantum states ρA and σA, circuit ansatz of unitary UR(θ), number of iterations ITR;
Output: an estimate of fidelity F(ρA ,σA).

Use Purification Subroutine to learn the purified state |ψ〉AR of ρA and the purified state |φ〉AR of σA.
Initialize parameters θ.
for itr = 1, . . . , ITR do

Apply UR(θ) to |φ〉AR and obtain the resulting state |φ̃〉AR = IA ⊗ UR(θ)|φ〉AR.

Compute the loss function L2(θ) := |〈φ̃|ψ〉|AR .
Maximize the loss function and update parameters θ;
end for
Output the optimized L2 as the final fidelity estimation;

consider quantum state learning via PQC and the framework of VQA. The main issue is how to design a
faithful loss function L3 to guide the learning direction. Such a loss function should be able to quantify the
closeness between target ρ and prepared state χ. For pure state cases, simply maximize the state overlap
Tr ρχ could help us learn the target state. But for general mixed states, this is not the case. Consider a
counter example of ρ = I/2 and χ being a random one-qubit mixed state. The overlap is always
Tr ρχ = 1/2 but this is clearly not the correct distance measure between ρ and χ. On the other hand, the
Hilbert–Schmidt norm defined as follows could be a good candidate:

Δ(ρ,χ) := ‖ρ− χ‖2
2 = Tr (ρ− χ)2. (16)

As the unknown state ρ is fixed, we have

argminχΔ(ρ,χ)

= argminχ Tr ρ2 + Tr χ2 − 2 Tr ρχ

= argminχ Tr χ2 − 2 Tr ρχ, (17)

where 0 < Tr ρ2 < 1 for mixed state ρ is a constant and hence does not influence the optimization
direction. Therefore, we choose our loss function to be

min
θ

L3(θ) := Tr χ2 − 2 Tr ρχ. (18)

Note that this loss function can be implemented on near-term devices since the state overlap can be
computed via the swap test [32, 50]. As a brief reminder, the swap test evaluates the overlap of two arbitrary
states by a single qubit measurement after a combination of Hadamard gates and controlled-swap gates.
Evidence has been found that the swap test has a simple physical implementation in quantum optics
[51, 52] and can be experimentally implemented on near-term quantum hardware [53–55].

After discussing the general picture of state learning, we introduce its application in learning the
purification of quantum state ρA on system A. This can be done by providing an ancillary qubit system R
with dimension dR and initializing the complete system with |χ0〉 = |00〉AR. Then we apply a parametrized
unitary operation UAR(θ) to drive the system and use classical optimization methods to minimize
equation (18). In the case of learning purification, we need to set

χA = TrR

[
UAR(θ)|χ0〉〈χ0|U†

AR(θ)
]

, (19)

where the symbol TrR denotes the partial trace operation with respect to the ancillary system R. With the
above set up, we introduce a VQA to learn the purification of a quantum state ρA as follows.

We want to emphasize that the scope of state learning is much broader than the purification learning
task. One could further develop this approach for quantum state preparation and many other applications.
For our purpose, learning a purified state to estimate the fidelity is enough. At the cost of introducing
ancillary qubits, one could prepare a purification |ψ〉AR of target mixed state ρA with high fidelity. Then, it
will be important to study the performance of VQSL with different ancillary dimensions dR. The following
analysis suggests that only a few ancillary qubits are necessary for low-rank states. For best performance,
one should choose the dimension of the ancillary system to be the same as the original system A such that
dR = dA.

Proposition 7 Suppose the input state ρA has the spectral decomposition ρA =
∑k

j=1λj|ψj〉〈ψj| with decreasing

spectrum {λj}k
j=1. There exists a quantum circuit UAR that generates χA from |00〉AR to approximate the target

8
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Algorithm 3. Variational quantum state learning (VQSL).

Input: quantum states ρA , circuit ansatz of unitary UAR(θ), number of iterations ITR;
Output: purification of ρA.

Initialize parameters θ.
for itr = 1, . . . , ITR do
Apply UAR(θ) to three equivalent initial states |χ0〉 on system AR and obtain the resulting partial states:

χ1
A = χ2

A = χ3
A = TrR

[
UAR(θ)|χ0〉〈χ0|U†

AR(θ)
]

;

Measure the overlap 〈O〉1 = Tr(χ1
Aχ

2
A) via swap test;

Measure the overlap 〈O〉2 = Tr(ρAχ
3
A) via swap test;

Compute the loss function L3(θ) = 〈O〉1 − 2〈O〉2;
Perform optimization for L3(θ) and update parameters θ;
end for
Output the final purified state |ψ〉AR = UAR(θ∗)|00〉AR;

state ρA with a fidelity that satisfies

F(ρA,χA)=

⎧⎪⎨
⎪⎩

1 if k � dR,√∑dR

j=1
λj otherwise,

(20)

where the second case is at least
√

dR/k.

Proof. Assume dR � dA. The goal is to solve

max
UAR

F(ρA,χA), (21)

where χA = TrR

[
UAR|00〉〈00|ARU†

AR

]
is the reduced state on the subsystem A. For convenience, denote the

state UAR|00〉AR by |ψ〉 and hence
χA = TrR|ψ〉〈ψ|AR. (22)

Since the Schmidt rank of |ψ〉 is at most dR, the rank of χA is also at most dR.
If k � dR, one could choose unitary UAR such that |ψ〉 = UAR|00〉AR =

∑k
j=1

√
λj|ψj〉A|ϕ〉jR, where

{|ψj〉A} and {|ϕj〉R} are orthonormal state sets. This ensures that χA = TrR|ψ〉〈ψ| =
∑

j λj|ψj〉〈ψj| = ρA

and leads to a fidelity F(ρA,χA) = 1. On the other hand, if k > dR, there exists an unitary U such that

|ψ〉 = UAR|00〉AR =
∑dR

j=1

√
ξj|ψj〉A|ϕj〉R. In particular, one could further choose ξj =

λj

η
for j = 1, . . . , dR,

where the denominator is defined as η =
∑dR

�=1 λ�. Then, one can calculate the fidelity F as

F(ρA,χA) = Tr

√
χ

1/2
A ρAχ

1/2
A

=

dR∑
j=1

√
λ2

j /η

=

dR∑
j=1

λj/
√
η

=
√
η �

√
dR

k
. (23)

�

3.3. Numerical experiments and trainability

In this section, we conduct simulations to investigate the performance of VFE for state fidelity estimation
and its subroutine VQSL for purification learning. The parametrized quantum circuit UAR(θ) used for
algorithm 3 VQSL and UR(θ) for algorithm 2 are recorded in appendix IV. All simulations including
optimization loops are implemented via Paddle quantum [44] on the PaddlePaddle deep learning platform
[45, 46].

We firstly generate ten random pairs of full-rank density matrices {ρ(1)
A ,σ(1)

A | · · · |ρ(10)
A ,σ(10)

A } for
nA = {1, 2, 3} qubits and calculate the deviation ΔF between the target fidelity and estimated fidelity. We
choose dR = dA for best performance in purification learning. The results are summarized in table 2. The

9
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Table 2. Error analysis for fidelity estimation VFE between
randomly generated full-rank density operators. For
purification learning, the Adam optimizer [57] is adopted and
hyper-parameters are taken to be depth L = 6, learning rate
LR = 0.2, and iteration loops ITR = 100 (the latter two
hyper-parameters are same for VFE).

Qubit number # nA = 1 nA = 2 nA = 3

Average error rate E[ΔF] 0.1694% 0.2476% 0.1960%
Standard deviation σ[ΔF] 0.1594% 0.1457% 0.1388%

Figure 5. Performance of VFE given two randomly generated three-qubit mixed states ρ, σ with different number of ancilla
qubits nR.

average error rate can be reduced to the level of <0.5%. The maximum average error
Emax [ΔF] ≈ 0.2476% happens at nA = 2, and no clear scaling phenomenon of average error is observed.

Next, we conduct simulations to qualitatively study the influence of limited ancillary qubits given
high-rank states k > dR. Three random pairs of density matrices, {ρ(1)

A ,σ(1)
A |ρ(2)

A ,σ(2)
A |ρ(3)

A ,σ(3)
A }, are prepared

with Rank = {2, 4, 8} respectively. Then, we test the performance of VFE with different number of ancillary
qubits nR = {1, 2, 3}. The results are summarized in figure 5. By providing enough ancilla qubits, VFE
could estimate the fidelity between two arbitrary full rank mixed states. If not, the purification subroutine
will be restricted to produce pure states with fidelity bounded by equation (20), which is consistent with the
numerical simulation. This scalability requirement offers the flexibility of providing few ancilla qubits for
low-rank states but can bring challenges when accurately evaluating the fidelity between two high-rank
quantum state in large dimensions.

Here we discuss the trainability issues for VFE and possible solutions. With an extended system
dimension introduced by the purification, VFE might exhibit a BP [39] due to a global loss function. This
would result an exponentially suppressed gradient with respect to the problem dimension, a phenomenon
known as the BP. Reference [56] shows BP is independent of the optimization methods, meaning that
simply change into a gradient-free optimizer would not help. In order to mitigate this trainability issue,
several approaches have been proposed such as the parameter initialization and correlation strategies
[57, 58], layer-wise learning [59], and variable structure ansatz [60–62]. We leave the adaptation of these
strategies to VFE for future study.

3.4. Implementation on superconducting quantum processor

We also apply our VFE to estimate the fidelity between states which are |+〉 states affected by dephasing
channel Dephp with different intensity p. The result with comparison to the values achieved from
simulation are listed in table 3. The experiments are performed on the IBM quantum platform, loading the
quantum device ibmq_quito containing five qubits.

The input state we choose here are ρ = Dephp1
(|+〉) and σ = Dephp2

(|+〉), where p1 = 0.2 and
p2 = 0.9. On the quantum device, the input states are prepared similarly to the preparation in section 2.4
and we keep the ancilla as a purification. Next, we operate PQC on the ancilla, and use sequential minimal

10



Quantum Sci. Technol. 7 (2022) 015019 R Chen et al

Table 3. Error analysis for VFE between
ρ = Dephp1

(|+〉) and σ = Dephp2
(|+〉). We

choose p1 = 0.2 and p2 = 0.9, and repeat the
experiment 10 times independently.

Backends Mean Variance Error rate

Theoretical value 0.70710 — —
Simulator 0.70721 0.00002 0.016%
ibmq_quito 0.71692 0.00003 1.388%

optimization [48] to optimize the parameters until the loss function converges to its maximum. We repeat
ten independent experiments with same input states and randomly initialized parameters. As demonstrated
in table 3, the estimated fidelity from our method are close to the ideal value with stable performance due
to a very small variance.

4. Conclusion and outlook

In this work, we have introduced near-term quantum algorithms VTDE and VFE to estimate trace distance
and quantum fidelity. A strength of our algorithms is that they estimate the metrics directly rather than
estimating their bounds. Our algorithms also do not require any assumption on the unknown input states.
These algorithms are executable on near-term quantum devices equipped with PQCs. In particular, VTDE
could be easily generalized for trace norm estimation for any Hermitian matrix and could avoid the BP
issue with logarithmic depth parameterized circuits.

Beyond benchmarking the quantum algorithms’ behavior, our VTDE and VFE could have a wide range
of applications in quantum information processing. A direct extension of VTDE might be the estimation
for the diamond norm [63–65], which is a widely-used distance measure for quantum channels. The trace
distance can also be applied to quantify the Bell non-locality [66], quantum entanglement [67], and the
security of quantum cryptography protocols [68], where VTDE could be utilized as a practical subroutine.
VFE may be applied to evaluate the conditional quantum mutual information of tripartite quantum states
[69]. It is also of great interest to have a further study on the estimation of sandwiched/geometric Rényi
relative entropies [70–72] as an extension of VFE. Efficient estimations of these distance measures could be
used to further evaluate the resource measures of entanglement, coherence, magic and other resources in
quantum information [73–83].
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